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QUASI-STEADY-STATE FLOWS IN A LIQUID FILM IN A GAS:

COMPARISON OF TWO METHODS OF DESCRIBING WAVES

UDC 532.516O. V. Voinov

The motion of thin films of a viscous incompressible liquid in a gas under the action of capillary forces
is studied. The surface tension depends on the surfactant concentration, and the liquid is nonvolatile.
The motion is described by the well-known model of quasi-steady-state viscous film flow. The linear-
wave solutions are compared with the solution using the Navier–Stokes equations. Situations are
studied where a solution close to the inviscid two-dimensional solutions exists and in the case of long
wavelength, the occurrence of sound waves in the film due to the Gibbs surface elasticity is possible.
The behavior of the exact solutions near the region of applicability of asymptotic equations is studied,
and nonmonotonic dependences of the wave characteristics on wavenumber are obtained.

Key words: viscous incompressible liquid, capillary forces, surface tension, film in a gas, wave
dynamics.

1. Model of Quasi-Steady-State Flows in a Film. The thermodynamic foundations of the dynamics of
liquid films with variable surface tension were developed in Gibbs papers on interfacial thermodynamics [1]. Gibbs
performed important studies of the dynamics of liquid films with a surfactant, which were continued by Mysels et
al. [2]. The motion of liquid films in a gas were theoretically and experimentally studied by Taylor [3]. Taylor’s
theory of the dynamics of free liquid films and the theory of shallow water on a horizontal surface [4] are based
on the ideal fluid model. Unlike in the problems considered in these theories, in the case where the film surface
is subjected to tangential stress, liquid viscosity plays an important role [5, 6]. Due to viscosity, the velocity of
the liquid can change insignificantly over the film thickness. In a free film, sound waves due to the Gibbs surface
elasticity [5] are possible.

We consider a film symmetric about the plane x3 = 0 using the following assumptions. The distance λ at
which the flow parameters vary is large compared to the film thickness h (λ � h). The characteristic time τ far
exceeds the time of the transfer vortex across the film: h2 � ντ (ν is the kinematic viscosity). This condition is
assumed to be satisfied for the time τ calculated from the value of λ and the characteristic liquid velocity: τ = λ/v∗,
which is equivalent to the smallness of the reduced Reynolds number of the hydrodynamic theory of lubrication:
v ∗ h2/(λν) � 1. Under these assumptions [6], the flow at each cross-sections of the film is close to steady-state
flow with quadratic velocity profile and coefficients that vary slowly over the coordinates x1, x2:

v′i = vi(x1, x2, t) +
3
2

(
1 −

(2x3

h

)2)
ui(x1, x2, t), i = 1, 2. (1.1)

Here vi is the velocity of the film surface and ui is the average flow velocity relative to the surface. In the equations
of motion of the film, the acceleration of the liquid is determined primarily by the velocity v [6]. To take into
account the effect of the velocity u on the small attenuation of waves in the film [7], we find the acceleration of
the liquid from the average value of the velocity v′ in the film. The difference between the average acceleration of
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the liquid in the film, determined by relation (1.1), and the acceleration calculated from the average velocity v′, is
proportional to the small quantity (u · ∇)u, whose value is insignificant in the adopted film flow model.

The equations of quasi-steady-state film flows [6] are written as

hρ
dv′i
dt

= 2∇iσ + hρgi + h∇i

(σ

2
∇2h − pe

)
+ ∇j{hμ(2δij div v + ∇ivj + ∇jvi)}; (1.2)

6μu = −h∇σ; (1.3)

∂h

∂t
+ ∇ · hv′ = 0, v′ = u + v; (1.4)

σ = σ(Γ, T ), Γ = Γ(c, T ), x3 = ±h/2; (1.5)

∂Γ
∂t

+ div (Γv) = −D
∂c

∂x3

(
x1, x2,

h

2
, t

)
; (1.6)

∂c

∂t
+ v′j∇jc − (x3 div v)∇3c = D∇2c, x3 ∈

(
− h

2
,
h

2

)
. (1.7)

Here δij is the Kronecker symbol, the summation is performed over the repeated index j = 1, 2, gi is the body force,
ρ is the density, μ is the dynamic viscosity, D is the diffusion coefficient, c and Γ are the volumetric and surface
impurity concentrations, whose profiles are symmetric about the point x3 = 0; the concentration Γ is related to
the value of c on the surface by the adsorption equation (1.5); the surface tension σ depends on Γ according to the
first equation in (1.5); the gas temperature T and pressure are constant; pe is an additional term in the pressure
expression for ultrathin films (differs in sign from the wedging pressure). The expression for the effective pressure pe

takes into account, in particular, the action of Van der Waals forces, which is described by similar equations for a
film in a gas and a film on a solid wall [5, 8–13]. Equations (1.6) and (1.7) describe impurity transfer in the liquid.
The possible effect of the surface rheology [6] is not considered.

There is divergent form of the momentum equation (1.2), which is suitable for writing the integrals of the
equations [14]:

∂

∂t
(hρv′i) + ∇jIij = hρgi, Iij = ρhv′iv

′
j − 2sij − hpij − Eδij ,

sij = σ(1 + |∇z|2/2)δij − σ(∇iz)∇jz, z = h/2,

pij = δij((σ/2)∇2h − pe) + μ(2δij div v + ∇ivj + ∇jvi).

Here v′i is the average velocity and E is the primitive of pe = ∂E/∂h.
In the case of an insoluble impurity in a liquid, Eqs. (1.5)–(1.7) reduce to the two equations

σ = σ(Γ, T ),
∂Γ
∂t

+ div (Γv) = 0. (1.8)

Using (1.8), we write the surface elasticity coefficient as

ε′ = −Γ
∂σ

∂Γ
. (1.9)

In some cases, the solution of the problem for an insoluble impurity can be used as an approximate solution
of the problem for a soluble impurity.

First of all, it is known under what conditions the impurity solubility effects are insignificant. We consider
small perturbations of the film equilibrium. If the film thickness is small enough [8, 14]:

h � H, H = ∂Γ/∂c

a soluble impurity behaves as an insoluble one and the transfer equation (1.8) has a small error: h/H � 1 (c is the
concentration on the surface). The diffusion of the impurity affects sound waves in the film [14], increasing their
attenuation. A decrease of h/H leads to a reduction in the diffusion effect.
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In addition, there is an analogy between the behavior of films with soluble and insoluble impurities [8, 14].
Let the average velocity in a film be close to the velocity of the surface v, i.e., u ≈ 0, and let the inequalities
h2 � Dτ � λ2 be satisfied. Then, 2Γ/h + c = f(ξi) (f is an arbitrary function of Lagrangian coordinates ξi); in
this case, the surface tension is σ = σ(h, ξi, T ). Similarly to (1.9), the surface elasticity coefficient of the film is
equal to

ε′ = −Γ
∂σ

∂Γ

(
1 +

h

2H

)−1

.

This analogy between the behavior of films with soluble and insoluble impurities can be valid in the case of sound
waves [5], where the characteristic velocity values differ significantly (u � v), and it is absent for slow aperiodic
motions with a low velocity of the surface v (the most interesting case for such motions). The existence of the
analogy is also limited by the condition kh � Pr−1/2 (Pr = ν/D is the diffusion Prandtl number, which is large
for liquids [14]).

Below, the case of an insoluble impurity is considered.
2. Problem of Waves within the Framework of Linearized Navier–Stokes Equations. We consider

the case of small perturbations periodic in the x axis, where the film thickness is given by the relation
h = h0 + h1 exp (α′t − ikx). (2.1)

The linear problem of waves in a liquid with a surfactant is considered in [15] for a liquid of infinite depth.
This problem differs significantly from the problem of a film in which the occurrence of sound waves [5] is possible.

For the solution of the problem of symmetric waves of small amplitude in the presence of an insoluble
impurity [5], the following dispersion equation holds:

(Ω tanh a + (2 + α2)) tanh (la) − 4l tanh a + δ(l − Ω(tanh (la) − l tanh a)α−2) = 0; (2.2)

l =
√

α + 1, a =
1
2

kh, α =
α′

νk2
, Ω =

σ − 2Qk−2

ρν2k
, δ =

ε′

ρν2k
. (2.3)

Here Q = −∂pe/∂h. According to relations (2.2) and (2.3), the dependence of the exponent α′ on the wavenumber
k includes three parameters, two of which are incorporated in the parameter Ω.

3. Waves in a Film on the Basis of Asymptotic Equations of Motion. The equations of motion for
the case of an insoluble impurity (1.1)–(1.4) and (1.8), with the use of relations (2.1), imply the equation

α2 + α
(
4 +

1
3

δa
)

+ Ωa +
δ

a
+

a2

3α
δΩ = 0. (3.1)

The dimensionless parameters (2.3) are written as

δ = Δ/a, Ω = Ωσa−1 + Ωea
−3,

where the elasticity coefficient Δ, the capillary pressure parameters Ωσ, and the effective pressure Ωe do not depend
on the wavenumber k.

In the case of an significant effect of the liquid inertia during motion of the film (for example, in the case of
sound waves), the modulus of the dimensionless parameter is significant: |α| � 1. In this case, Eq. (3.1) has the
same constraint as the model of quasi-steady-state flow: h2 � ντ . In view of relations |α′| ≈ 1/τ , this implies

|α|a2 � 1. (3.2)

Inequality (3.2) is valid when on the film surface is subjected to tangential stress due to the elasticity coefficient
ε′ 	= 0 (δ 	= 0), and it is not extended to problems with no elasticity.

4. Relationship between the Dispersion Equations of the Approximate and Exact Theories.
We consider the dispersion equation (3.1) of the approximate theory and the asymptotic form (for a � 1) of the
dispersion equation (2.2) of the linear-wave problem within the framework of the Navier–Stokes equations. We take
into account the main terms of the Taylor expansions for a = 0 for the functions in (2.2). We omit the small terms
O(a2) but retain the small terms O(αa2). As a result, the limiting form of the exact equation (2.2) for long waves
coincides with the approximate equation (3.1), which follows from the asymptotic equations.

For a considerable kh, the approximate values of the exponent α(k) differ from the exact values continuing
the solution for small kh. To determine the region of applicability of the approximate solution, we consider it up
to values kh ≈ 1, together with the exact solution.
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5. Roots of the Dispersion Equation. We consider the solution for a relatively small effect of the liquid
viscosity: λ2 � ντ or |α| � 1. We find two roots of Eq. (3.1) approximately for a small value of the number a,
assuming, in addition, that |α| � 1:

α = ±iω0, ω0 = (Ωa + δ/a)1/2. (5.1)

In view of (3.2), this is true for

1 � ω0 � a−2.

Here the second inequality is significant when δ 	= 0. We note that solution (5.1) t corresponds to a small second
velocity: u � v.

We write the high-frequency root of Eq. (3.1) in approximate form, assuming that the contribution of the
capillary pressure parameter Ωσ is small:

α = ±ia−1(Δ + Ωe)1/2.

For Δ+Ωe < 0, this implies exponential instability of the film [5]. If inequality Δ+Ωe > 0 is valid, the dimensional
frequency ω′

0 is proportional to the wavenumber k [5], which corresponds to a sound wave. For Δ � Ωe, we express
the frequency in terms of the sound velocity cs:

ω′
0 = csk, cs = (2ε′/(ρh))1/2.

The dimensionless attenuation decrement β depends on the elasticity [7]:

α = ±iω0 − β, β = 2 +
1
6

Δ2

Δ + Ωa3
. (5.2)

Let us consider wave attenuation for one oscillation versus surface elasticity for a value of a small enough so
that the inequality Ωa3 � Δ is satisfied. From (5.1) and (5.2) it follows that there is a minimum of the energy loss
for one oscillation: min (β/ω0) at Δ = 12. In this case, the wave is the closest to the wave in an ideal compressible
medium.

We specify the root (5.1) of Eq. (3.1) by means of iteration:

α = ±iω1 − β, ω2
1 = ω2

0 − β2 +
2
3

β
ΩaΔ
ω2

0

. (5.3)

The third root of Eq. (3.1) corresponds to possible aperiodic motions. In the presence of a root with a high
frequency (ω0 � 1) and a � 1,

α3 ≈ α30 = −a2

3
Ωδ

ω2
0

. (5.4)

We specify the root (5.4) of Eq. (3.1) by means of iteration:

α3 = −(1/3)ΩaΔ(ω2
0 + α2

30 + α30(4 + Δ/3))−1. (5.5)

We show that the third root is small compared to the dimensionless frequency ω0. The elasticity coefficient δ ∼ Ωa2

is estimated as

α3 ∼ a2ω2
0 � ω0.

For a large value of the coefficient δ � Ωa2, we have the estimate

α3 = −Ωa3/3 � a2ω2
0 � ω0.

The small value of the root α3 is responsible for the stabilization of the unstable film (for Ωe < 0) due to the
impurity effect [5]. As the elasticity increases, the instability passes from the high-frequency branch of the solution
of the dispersion equation to the branch of aperiodic motion with the long-wave perturbation growth increment
decreasing many times.

6. Relations between the Wave Parameters α(k) of the Approximate and Exact Theories.
We consider the dependences of the wave characteristics on the wavenumber for the ratio of the capillary pressure
parameter to the elasticity coefficient Ωσ/Δ = σ/ε′ = 10. The special properties of ultrathin films are not considered:
Ωe = 0.
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Fig. 1. Frequency versus wavenumber for Ωσ = 10 (1), 100 (2), 1000 (3), and 2285 (4): the solid
curves are solutions of the exact equation (2.2); the dashed curves are calculated by formulas (5.2)
and (5.3).
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Fig. 2. Attenuation decrement versus wavenumber (notation the same as in Fig. 1).

Fig. 3. Nonmonotonic curves of the attenuation decrement (1) and frequencies (2) versus wavenum-
ber: the solid curves are solutions of the exact equation (2.2); the dashed curves are calculated by
formulas (5.2) and (5.3).

We denote αa2 = X + iY . Figure 1 shows curves of the dimensionless frequency Y versus dimensionless
wavenumber a = kh/2. The roots of Eq. (2.2) that at a → 0 becomes roots of Eq. (3.1) are considered. As the
elasticity coefficient Δ increases, the region in which the exact and asymptotic theories agree becomes narrower.
The solid curve 4 has the point of inflection a = 0.2772. This implies that with a further increase in the parameter
Δ, the dependence Y (a) for a < 1 is nonmonotonic.

Figure 2 shows curves of the dimensionless attenuation decrement −X versus wavenumber a. The exact
curve 4 is nonmonotonic. Nonmonotonicity appears for Δ = 209.69, where there is the point of inflection cor-
responding to the value a = 0.3169. The nonmonotonicity of the dependences of the frequency and attenuation
decrement on wavenumber is not described by asymptotic theory.
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Fig. 4. Attenuation decrement of aperiodic motion for Ωσ = 1000 (1), 2600 (2), 5000 (3), and 104 (4): the solid curves
are solutions of the exact equation (2.2); the dashed curves are calculated by formula (5.5).

Fig. 5. Attenuation decrement (1 and 2) and frequencies (1′ and 2′) versus elasticity coefficient for Ωσ = 1000: the
solid curves are solutions of the exact equation (2.2); the dashed curve are calculated by formulas (5.2) and (5.3);
curves 1 and 1′ refer to a = 0.125 and curves 2 and 2′ refer to a = 0.25.

The point a = 0 corresponds to the absolute minimum of the oscillation attenuation, near which the energy
loss due to oscillations disappear: β/ω → 0 as a → 0.

Figure 3 gives nonmonotonic dependences of the attenuation decrement and frequency on the wavenumber.
According to the exact solution, the attenuation decrement is maximal at a = 0.2544. At first sight, the solid
curve 1 has a corner point. However, calculations with small a step in the wavenumber a show that this curve is
smooth. For small a, the exact and asymptotic solutions coincide.

For a small value of a, all dependences of the frequency on the wavenumber in Figs. 1 and 3 are nearly linear.
The linear asymptotics corresponds to a sound wave in a film [5] with a small attenuation decrement (of order a2).

Equation (3.1) has a real third root α3 which corresponds to aperiodic motion. The dependences of the
coefficient X = α3a

2 on the wavenumber for various values of Ωσ are given in Fig. 4. The regions of applicability of
the approximate solutions correspond to values |X | < 1. It is evident that the asymptotic solution agrees well with
the exact solution. From Fig. 4, it follows that purely attenuating motions with a significant effect of the inertia of
the liquid are possible.

The effect of the elasticity coefficient Δ on the wave frequency and attenuation decrement for Ωσ = 1000
is shown in Fig. 5. It is evident that the exact solution agrees well with the linear asymptotics of the attenuation
decrement −X(Δ) (curves 1 and 2). The asymptotics takes into account the effect of the second velocity u on
the oscillation attenuation [7]. As the elasticity increases, the attenuation decrement |X | changes many times
compared to the value for Δ = 0 determined by viscous stresses in the longitudinal flow (curves 1). The effect of
the elasticity on the attenuation [7, 14] is determined by the small value of the ratio h2/(ντ) where τ = 1/ω′

0 (ω′
0 is

the dimensional frequency).
In the small-wavenumber limit (kh → 0) for the solutions describing sound waves [5], neither viscosity nor

the second velocity u are of significance in the momentum equation (1.2). In this case, the film is similar to an
ideal compressible medium if the elasticity coefficient Δ is bounded. In the case Δ ≈ a−2, the wave attenuation is
comparable to the frequency and asymptotic theory is inapplicable since condition (3.2) is not satisfied. We note
that inequality (3.2) is used to derive an approximate solution of the dispersion equation taking into account the
surface elasticity [5].

Figure 6 shows curves of the dimensionless parameter X = α3a
2 versus elasticity coefficient Δ for Ωσ = 1000

for the case of aperiodic film motion. For a = 0.125, the exact values and solution (5.5) differ by less than 1%
(curves 1). In this case, X depends appreciably on the elasticity coefficient Δ in the range of small values of the
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Fig. 6. Attenuation decrement of aperiodic motions versus elasticity co-
efficient: the solid curves are solutions of the exact equation (2.2); the
dashed curves are calculated by formula (5.5); curve 1 refers to m = 10
and a = 0.125; curves 2 refer to m = 1 and a = 0.25.

latter, and in the range 20 < Δ < 200, the value of X varies only slightly. This region of slight variation of X is
absent for a = 0.25. The approximate solutions are suitable for small a and |X | < 1.

7. Conclusions. The above comparison of two methods of describing linear waves in a liquid film in the
presence of an insoluble surfactant leads to the following conclusions.

Nonmonotonic dependences of the wave frequency and the attenuation decrement on the wavenumber outside
the region of applicability of the asymptotics are possible.

For small values of the wavenumber, the region of applicability of the approximate solutions is adequately
estimated by the equality for which the strong inequality (3.2) is not satisfied.

The slope of the curve of frequency versus wavenumber at the coordinate origin corresponds to the sound
velocity in the film, and the asymptotic model [6] and the exact theory of linear waves [5] agree.

Aperiodic film motion is possible for a great effect of not only viscosity but also inertia forces.
For a certain value of the surface elasticity coefficient in the long wavelength limit, the energy loss for the

period become minimal and the ratio of the sound velocity in the film to the corresponding value in an ideal
two-dimensional compressible medium is the closest to unity.
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